168大数据

标题: HBase基本架构及原理 [打印本页]

作者: 168主编    时间: 2019-3-19 19:10
标题: HBase基本架构及原理
本帖最后由 168主编 于 2019-3-19 19:16 编辑

1. HBase框架简单介绍
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。HBase使用和 BigTable非常相同的数据模型。用户存储数据行在一个表里。一个数据行拥有一个可选择的键和任意数量的列,一个或多个列组成一个ColumnFamily,一个Fmaily下的列位于一个HFile中,易于缓存数据。表是疏松的存储的,因此用户可以给行定义各种不同的列。在HBase中数据按主键排序,同时表按主键划分为多个Region。
在分布式的生产环境中,HBase 需要运行在 HDFS 之上,以 HDFS 作为其基础的存储设施。HBase 上层提供了访问的数据的 Java API 层,供应用访问存储在 HBase 的数据。在 HBase 的集群中主要由 Master 和 Region Server 组成,以及 Zookeeper,具体模块如下图所示:
简单介绍一下 HBase 中相关模块的作用:
2. Hbase数据模型
2.1 逻辑视图
基本概念:
2.2 物理模型:
疑问:每一个Region都只存储一个ColumnFamily的数据,并且是该CF中的一段(按Row的区间分成多个 Region)?这个需要查证,每个Region只包含一个ColumnFamily可以提高并行性?然而,我只知道每个Store只包含一个ColumnFamily的数据。
2.3 ROOT表和META表
HBase的所有Region元数据被存储在.META.表中,随着Region的增多,.META.表中的数据也会增大,并分裂成多个新的Region。为了定位.META.表中各个Region的位置,把.META.表中所有Region的元数据保存在-ROOT-表中,最后由Zookeeper记录-ROOT-表的位置信息。所有客户端访问用户数据前,需要首先访问Zookeeper获得-ROOT-的位置,然后访问-ROOT-表获得.META.表的位置,最后根据.META.表中的信息确定用户数据存放的位置,如下图所示。

-ROOT-表永远不会被分割,它只有一个Region,这样可以保证最多只需要三次跳转就可以定位任意一个Region。为了加快访问速度,.META.表的所有Region全部保存在内存中。客户端会将查询过的位置信息缓存起来,且缓存不会主动失效。如果客户端根据缓存信息还访问不到数据,则询问相关.META.表的Region服务器,试图获取数据的位置,如果还是失败,则询问-ROOT-表相关的.META.表在哪里。最后,如果前面的信息全部失效,则通过ZooKeeper重新定位Region的信息。所以如果客户端上的缓存全部是失效,则需要进行6次网络来回,才能定位到正确的Region。
一个完整分布式的HBase的组成示意图如下,后面我们再详细谈其工作原理。

3. 高可用
3.1 Write-Ahead-Log(WAL)保障数据高可用
我们理解下HLog的作用。HBase中的HLog机制是WAL的一种实现,而WAL(一般翻译为预写日志)是事务机制中常见的一致性的实现方式。每个RegionServer中都会有一个HLog的实例,RegionServer会将更新操作(如 Put,Delete)先记录到 WAL(也就是HLo)中,然后将其写入到Store的MemStore,最终MemStore会将数据写入到持久化的HFile中(MemStore 到达配置的内存阀值)。这样就保证了HBase的写的可靠性。如果没有 WAL,当RegionServer宕掉的时候,MemStore 还没有写入到HFile,或者StoreFile还没有保存,数据就会丢失。或许有的读者会担心HFile本身会不会丢失,这是由 HDFS 来保证的。在HDFS中的数据默认会有3份。因此这里并不考虑 HFile 本身的可靠性。
HFile由很多个数据块(Block)组成,并且有一个固定的结尾块。其中的数据块是由一个Header和多个Key-Value的键值对组成。在结尾的数据块中包含了数据相关的索引信息,系统也是通过结尾的索引信息找到HFile中的数据。
3.2 组件高可用4. HBase读写流程
上图是RegionServer数据存储关系图。上文提到,HBase使用MemStore和StoreFile存储对表的更新。数据在更新时首先写入HLog和MemStore。MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到Flush队列,由单独的线程Flush到磁盘上,成为一个StoreFile。与此同时,系统会在Zookeeper中记录一个CheckPoint,表示这个时刻之前的数据变更已经持久化了。当系统出现意外时,可能导致MemStore中的数据丢失,此时使用HLog来恢复CheckPoint之后的数据。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定阈值后,就会进行一次合并操作,将对同一个key的修改合并到一起,形成一个大的StoreFile。当StoreFile的大小达到一定阈值后,又会对 StoreFile进行切分操作,等分为两个StoreFile。
4.1 写操作流程
可以看出HBase只有增添数据,所有的更新和删除操作都是在后续的Compact历程中举行的,使得用户的写操作只要进入内存就可以立刻返回,实现了HBase I/O的高机能。
4.2 读操作流程
寻址过程:client-->Zookeeper-->-ROOT-表-->.META.表-->RegionServer-->Region-->client







欢迎光临 168大数据 (http://bi168.cn/) Powered by Discuz! X3.2